Abstract
Analytic expressions for the eigenvalues for the four-wave components at an oblique angle of light incidence inside a randomly oriented anisotropic magneto-optic dielectric medium are reported explicitly. In particular, these solutions are valid as long as the dielectric function tensor consists of a symmetric and an antisymmetric part. The normalized Jones reflection and transmission coefficients, i.e., the generalized ellipsometric parameters of homogeneously layered systems having nonsymmetric dielectric properties, are obtained immediately from a recently reviewed 4 x 4 matrix approach. Our explicit solutions allow a future analysis of the generalized ellipsometric data of multilayered magneto-optic media regardless of the orientation of the material magnetization and crystalline axes and the angle of light incidence. Possible experimental thin-film situations are discussed in terms of generalized ellipsometric parameters and illustrated for birefringent free-carrier effects in heavily doped semiconductor thin films and for oblique magnetization directions in magneto-optic multilayer systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.