Abstract
ABSTRACTA general solution to the magnetoelastic problem with a rigid line inclusion is presented. Based upon the complex variable theory, the proposed analysis dealing with sectionally holomorphic functions can be reduced to find the solution of the Hilbert problem. It is indicated that the magnetoelastic stress fields near the inclusion tip possess a square root singularity just like that of the corresponding crack problem. The stress singularity coefficients which are defined in this study to characterize the near tip fields are similar to the stress intensity factors for crack problem. Numerical results of the stress distribution in the vicinity of inclusion tip are also displayed in graphic form to elucidate the effect of various parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.