Abstract

Abstract We show that least-squares cross-validation methods share a common structure that has an explicit asymptotic solution, when the chosen kernel is asymptotically separable in bandwidth and data. For density estimation with a multivariate Student-t(ν) kernel, the cross-validation criterion becomes asymptotically equivalent to a polynomial of only three terms. Our bandwidth formulae are simple and noniterative, thus leading to very fast computations, their integrated squared-error dominates traditional cross-validation implementations, they alleviate the notorious sample variability of cross-validation and overcome its breakdown in the case of repeated observations. We illustrate our method with univariate and bivariate applications, of density estimation and nonparametric regressions, to a large dataset of Michigan State University academic wages and experience.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.