Abstract

We consider a class of nonlocal reaction-diffusion problems, referred to as replicator-mutator equations in evolutionary genetics. By using explicit changes of unknown function, we show that they are equivalent to the heat equation and, therefore, compute their solution explicitly. Based on this, we then prove that, in the case of beneficial mutations in asexual populations, solutions dramatically depend on the tails of the initial data: they can be global, become extinct in finite time or, even, be defined for no positive time. In the former case, we prove that solutions are accelerating, and in many cases converge for large time to some universal Gaussian profile. This sheds light on the biological relevance of such models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.