Abstract

A risk-sensitive stochastic control problem with finite/infinite horizon is studied with a 1-dimensional controlled process defined by a linear SDE with a linear control-term in the drift. In the criterion function, a non-linear/quadratic term is introduced by using the solution to a Riccati differential equation, and hence, the problem is not ELQG (Exponential Linear Quadratic Gaussian) in general. For the problem, optimal value and control are calculated in explicit forms and the set of admissible risk-sensitive parameters is given in a concrete form. As applications, two types of large deviations control problems, i.e., maximizing an upside large deviations probability and minimizing a downside large deviations probability, are mentioned.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.