Abstract
Divide-and-conquer dividing by a half recurrences, of the form [Formula: see text] appear in many areas of applied mathematics, from the analysis of algorithms to the optimization of phylogenetic balance indices. These equations are usually "solved" by means of a Master Theorem that provides a bound for the growing order of xn, but not the solution's explicit expression. In this paper we give a finite explicit expression for this solution, in terms of the binary decomposition of n, when the independent term p(n) is a polynomial in ⌈n/2⌉ and ⌊n/2⌋. As an application, we obtain explicit formulas for several sequences of interest in phylogenetics, combinatorics, and computer science, for which no such formulas were known so far: for instance, for the Total Cophenetic index and the rooted Quartet index of the maximally balanced bifurcating phylogenetic trees with n leaves, and the sum of the bitwise AND operator applied to pairs of complementary numbers up to n.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.