Abstract

A generalized Neumann solution for the two-phase fractional Lamé–Clapeyron–Stefan problem for a semi-infinite material with constant initial temperature and a particular heat flux condition at the fixed face is obtained, when a restriction on data is satisfied. The fractional derivative in the Caputo sense of order $$\alpha \in (0,1)$$ respect on the temporal variable is considered in two governing heat equations and in one of the conditions for the free boundary. Furthermore, we find a relationship between this fractional free boundary problem and another one with a constant temperature condition at the fixed face and based on that fact, we obtain an inequality for the coefficient which characterizes the fractional phase–change interface obtained in Roscani and Tarzia (Adv Math Sci Appl 24(2):237–249, 2014). We also recover the restriction on data and the classical Neumann solution, through the error function, for the classical two-phase Lamé–Clapeyron–Stefan problem for the case $$\alpha =1$$ .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.