Abstract

A quasi-three-dimensional rotor/stator analysis has been developed for blade-to-blade flows in turbomachinery. The analysis solves the unsteady Euler or thin-layer Navier-Stokes equations in a body-fitted coordinate system. It accounts for the effects of rotation, radius change, and stream-surface thickness. The Baldwin-Lomax eddy-viscosity model is used for turbulent flows. The equations are integrated in time using a four-stage Runge-Kutta scheme with a constant timestep. Results are shown for the first stage of the Space Shuttle Main Engine high pressure fuel turbopump. Euler and Navier-Stokes results are compared on the scaled single- and multi-passage machine. The method is relatively fast and the quasi-three-dimensional formulation is applicable to a wide range of turbomachinery geometries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call