Abstract

An analogue of the Dolbeault complex is introduced for regular functions of several quaternionic variables and studied by means of two different methods. The first one comes from algebraic analysis (for a thorough treatment see the book [F. Colombo, I. Sabadini, F. Sommen, D.C. Struppa, Analysis of Dirac systems and computational algebra, Progress in Mathematical Physics, Vol. 39, Birkhäuser, Boston, 2004]), while the other one relies on the symmetry of the equations and the methods of representation theory (see [F. Colombo, V. Souček, D.C. Struppa, Invariant resolutions for several Fueter operators, J. Geom. Phys. 56 (2006) 1175–1191; R.J. Baston, Quaternionic Complexes, J. Geom. Phys. 8 (1992) 29–52]). The comparison of the two results allows one to describe the operators appearing in the complex in an explicit form. This description leads to a duality theorem which is the generalization of the classical Martineau–Harvey theorem and which is related to hyperfunctions of several quaternionic variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.