Abstract

This paper proposes Carousel, a mechanism to manage local memory space, i.e. cache or scratch pad memory (SPM), such that inter-task interference is completely eliminated. The cost of saving and restoring the local memory state across context switches is explicitly handled by the preempting task, rather than being imposed implicitly on preempted tasks. Unlike earlier attempts to eliminate inter-task interference, Carousel allows each task to use as much local memory space as it requires, permitting the approach to scale to large numbers of tasks. Carousel is experimentally evaluated using a simulator. We demonstrate that preemption has no effect on task execution times, and that the Carousel technique compares well to the conventional approach to handling interference, where worst-case interference costs are simply added to the worst-case execution times (WCETs) of lower-priority tasks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.