Abstract

Abstract In present-day Earth system models, the coupling of land surface and atmosphere is based on simplistic assumptions. Often the heterogeneous land surface is represented by a set of effective parameters valid for an entire model grid box. Other models assume that the surface fluxes become horizontally homogeneous at the lowest atmospheric model level. For heterogeneity above a certain horizontal length scale this is not the case, resulting in spatial subgrid-scale variability in the fluxes and in the state of the atmosphere. The Max Planck Institute for Meteorology’s Earth System Model is used with three different coupling schemes to assess the importance of the representation of spatial heterogeneity at the land surface as well as within the atmosphere. Simulations show that the land surface–atmosphere coupling distinctly influences the simulated near-surface processes with respect to different land-cover types. The representation of heterogeneity also has a distinct impact on the simulated gridbox mean state and fluxes in a large fraction of land surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call