Abstract
In this contribution, we present how to obtain explicit state space models in port-Hamiltonian form when a mixed finite element method is applied to a linear mechanical system with non-uniform boundary conditions. The key is to express the variational problem based on the principle of virtual power, with both the Dirichlet (velocity) and Neumann (stress) boundary conditions imposed in a weak sense. As a consequence, the formal skew-adjointness of the system operator becomes directly visible after integration by parts, and, after compatible FE discretization, the boundary degrees of freedom of both causalities appear as explicit inputs in the resulting state space model. The rationale behind our formulation is illustrated using a lumped parameter example, and numerical experiments on a one-dimensional rod show the properties of the approach in practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.