Abstract

Carbon nanotubes (CNTs) decorated with silver nanoparticles (AgNPs) are promising nanomaterials for improving the dielectric properties of polymer materials for energy storage and micro-capacitor applications. However, the cost of AgNPs limits their wide application. This work describes the synthesis of green silver nanoparticles (GAgNPs) from cashew leaves and their hybridization with CNTs. These new hybrid nanocomposites were developed by adding 0.1, 0.2, 0.3, 0.4 and 0.5% CNTs and 0.5% GAgNPs in an epoxy matrix. Electrical conductivity, dielectric constant, and capacitor raised as CNTs content increased from 0.1 to 0.5% with 0.5% GAgNPs. The high dielectric constant reported in this work was made possible because of the high electron mobility of GAgNPs, which helps to enhance the conductivity of the epoxy. The highest electrical conductivity and dielectric constant were obtained for hybrid nanocomposites based on 0.5% CNTs and 0.5% GAgNPs. It was established that GAgNPs modified CNTs can be used to enhanced the electrical conductivity, dielectric constant and capacitance of epoxy resins for isotropic conductive adhesives, assemblies, and electronic packaging applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.