Abstract

Under low data regimes, few-shot object detection (FSOD) transfers related knowledge from base classes with sufficient annotations to novel classes with limited samples in a two-step paradigm, including base training and balanced fine-tuning. In base training, the learned embedding space needs to be dispersed with large class margins to facilitate novel class accommodation and avoid feature aliasing while in balanced fine-tuning properly concentrating with small margins to represent novel classes precisely. Although obsession with the discrimination and representation dilemma has stimulated substantial progress, explorations for the equilibrium of class margins within the embedding space are still in full swing. In this study, we propose a class margin optimization scheme, termed explicit margin equilibrium (EME), by explicitly leveraging the quantified relationship between base and novel classes. EME first maximizes base-class margins to reserve adequate space to prepare for novel class adaptation. During fine-tuning, it quantifies the interclass semantic relationships by calculating the equilibrium coefficients based on the assumption that novel instances can be represented by linear combinations of base-class prototypes. EME finally reweights margin loss using equilibrium coefficients to adapt base knowledge for novel instance learning with the help of instance disturbance (ID) augmentation. As a plug-and-play module, EME can also be applied to few-shot classification. Consistent performance gains upon various baseline methods and benchmarks validate the generality and efficacy of EME. The code is available at github.com/Bohao-Lee/EME.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call