Abstract
Explicit local time-stepping methods are derived for time dependent Maxwell equations in conducting and non-conducting media. By using smaller time steps precisely where smaller elements in the mesh are located, these methods overcome the bottleneck caused by local mesh refinement in explicit time integrators. When combined with a finite element discretisation in space with an essentially diagonal mass matrix, the resulting discrete time-marching schemes are fully explicit and thus inherently parallel. In a non-conducting source-free medium they also conserve a discrete energy, which provides a rigorous criterion for stability. Starting from the standard leap-frog scheme, local time-stepping methods of arbitrarily high accuracy are derived for non-conducting media. Numerical experiments with a discontinuous Galerkin discretisation in space validate the theory and illustrate the usefulness of the proposed time integration schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.