Abstract

Recently, it has been suggested that the many-body localized phase can be characterized by local integrals of motion. Here we introduce a Hilbert-space-preserving renormalization scheme that iteratively finds such integrals of motion exactly. Our method is based on the consecutive action of a similarity transformation using displacement operators. We show, as a proof of principle, localization and the delocalization transition in interacting fermion chains with random on-site potentials. Our scheme of consecutive displacement transformations can be used to study many-body localization in any dimension, as well as disorder-free Hamiltonians.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.