Abstract
Cyclic models are a subclass of graphical Markov models with simple, undirected probability graphs that are chordless cycles. In general, all currently known distributions require iterative procedures to obtain maximum likelihood estimates in such cyclic models. For exponential families, the relevant conditional independence constraint for a variable pair is given all remaining variables, and it is captured by vanishing canonical parameters involving this pair. For Gaussian models, the canonical parameter is a concentration, that is, an off‐diagonal element in the inverse covariance matrix, while for Ising models, it is a conditional log‐linear, two‐factor interaction. We give conditions under which the two different likelihood functions, that is, one for continuous and one for binary variables, permit nevertheless explicit maximum likelihood estimates, and we show that their estimated correlation matrices are identical, provided the relevant starting correlation matrices coincide. Copyright © 2017 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.