Abstract

Kolyvagin used Heegner points to associate a system of cohomology classes to an elliptic curve over Q and conjectured that the system contains a non-trivial class. His conjecture has profound implications on the structure of Selmer groups. We provide new computational and theoretical evidence for Kolyvagin's conjecture. More precisely, we explicitly approximate Heegner points over ring class fields and use these points to give evidence for the conjecture for specific elliptic curves of rank two. We explain how Kolyvagin's conjecture implies that if the analytic rank of an elliptic curve is at least two then the Z p -corank of the corresponding Selmer group is at least two as well. We also use explicitly computed Heegner points to produce non-trivial classes in the Shafarevich–Tate group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.