Abstract

4 2 2 ABSTRACT. Working on the four-sphere S , a flat four-torus, S x S2, or a compact hyperbolic space, with a metric which is an arbitrary positive function times the standard one, we give explicit formulas for the functional determinants of the conformal Laplacian (Yamabe operator) and the square of the Dirac operator, and discuss qualitative features of the resulting variational problems. Our analysis actually applies in the conformal class of any Riemannian, locally symmetric, Einstein metric on a compact 4-manifold; and to any geometric differential operator which has positive definite leading symbol, and is a positive integral power of a conformally covariant operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.