Abstract
This paper studies certain models of irreducible admissible representations of the split special orthogonal group SO(2n+1) over a nonarchimedean local field. Ifn=1, these models were considered by Waldspurger. Ifn=2, they were considered by Novodvorsky and Piatetski-Shapiro, who called them Bessel models. In the works of these authors, uniqueness of the models is established; in this paper functional equations and explicit formulas for them are obtained. As a global application, the Bessel period of the Eisenstein series on SO(2n+1) formed with a cuspidal automorphic representation π on GL(n) is computed—it is shown to be a product of L-series. This generalizes work of Böcherer and Mizumoto forn=2 and base field ℚ, and puts it in a representation-theoretic context. In an appendix by M. Furusawa, a new Rankin-Selberg integral is given for the standardL-function on SO(2n+1)×GL(n). The local analysis of the integral is carried out using the formulas of the paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.