Abstract

In this paper, a new method is developed to obtain explicit and integral expressions for the kernel of the (κ,a)-generalized Fourier transform for κ=0. In the case of dihedral groups, this method is also applied to the Dunkl kernel as well as the Dunkl Bessel function. The method uses the introduction of an auxiliary variable in the series expansion of the kernel, which is subsequently Laplace transformed. The kernel in the Laplace domain takes on a much simpler form, by making use of the Poisson kernel. The inverse Laplace transform can then be computed using the generalized Mittag–Leffler function to obtain integral expressions. In case the parameters involved are integers, explicit formulas are obtained using partial fraction decomposition. New bounds for the kernel of the (κ,a)-generalized Fourier transform are obtained as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.