Abstract

This paper addresses Lipschitzian stability issues, that play an important role in both theoretical and numerical aspects of variational analysis, optimization, and their applications. We particularly concentrate on the so-called relaxed one-sided Lipschitz property of set-valued mappings with negative Lipschitz constants. This property has been much less investigated than more conventional Lipschitzian behavior, while being well recognized in a variety of applications. Recent work has revealed that set-valued mappings satisfying the relaxed one-sided Lipschitz condition with negative Lipschitz constant possess a localization property, that is stronger than uniform metric regularity, but does not imply strong metric regularity. The present paper complements this fact by providing a characterization, not only of one specific single point of a preimage, but of entire preimages of such mappings. Developing a geometric approach, we derive an explicit formula to calculate preimages of relaxed one-sided Lipschitz mappings between finite-dimensional spaces and obtain a further specification of this formula via extreme points of image sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.