Abstract

In the paper, a pragmatic approach to finding the dual formulation for isotropic perfectly plastic materials given a dissipation potential dependent on three cylindrical invariants and involving the Ottosen shape function is proposed and illustrated by examples. The main goal is to provide instructions on how to perform the Legendre transformation used when passing from a dissipation potential to its conjugate yield condition and offer some suggestions regarding calibration for particular potentials dependent on the trace of the strain rate tensor and the product of the norm of its deviator and the Ottosen shape function, which covers a wide class of engineering materials. The classic framework for constitutive modelling of thermodynamically consistent materials within the small deformation theory is used. First, general formulae connecting a dissipation potential dependent on three invariants of the strain rate tensor to the coupled yield condition are derived. Then, they are narrowed down for the aforementioned case of dissipation functions dependent on the Lode angle in a way proposed by Ottosen. Finally, three examples are given involving classical potentials: Beltrami’s, Drucker–Prager’s and Mises–Schleicher’s generalised potential using the shape function. Detailed calculations exposing the introduced technique are performed. Also, a method of the calibration of such potentials leading to explicit mathematical formulae is demonstrated, based on the typical tests located on the tension and compression meridians.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.