Abstract

Many decision-making problems in transportation networks can be defined as maximum flow problems. During the last five decades, several efficient solution approaches have been proposed for the deterministic maximum flow problems. On the other hand, arc capacities of networks cannot be precisely defined in many real life settings. These networks are called uncertain. In this case, it becomes challenging to maintain a stable flow on the network. This paper presents a new approach based on the framework of interval analysis for the solution of maximum flow problems. We address a multiple-owners network problem by presenting a risk explicit interval linear programming model for the desired value of the system aspiration level. Afterwards, we employ a well-known collaborative game theoretic approach (the Shapley value) in a multiple-owners network under interval uncertainty in order to solve the maximum flow problem. A detailed numerical example is provided to present the suitability of the proposed approach in devising a stable network flow. The obtained numerical results and the trade-offs between decision risk and network flow information would be very valuable for supporting decision makers in resolving maximum flow problems when facing uncertainty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.