Abstract

An explicit finite element model was developed to investigate crack initiation and spall formation in machine elements subject to rolling contact fatigue. The modeling approach utilizes continuum damage mechanics to capture the initiation and propagation of fatigue damage that leads to the formation of a surface spall. The material microstructure is modeled via a randomly generated Voronoi tessellation. The material parameters for the model were obtained independently from torsional fatigue life data for 52100 bearing steel. The life scatter (Weibull slope) and the spall geometry obtained from the model correlate well with experimental results available in the open literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call