Abstract

Many approximate nearest neighbor search algorithms operate under memory constraints, by computing short signatures for database vectors while roughly keeping the neighborhoods for the distance of interest. Encoding procedures designed for the Euclidean distance have attracted much attention in the last decade. In the case where the distance of interest is based on a Mercer kernel, we propose a simple, yet effective two-step encoding scheme: first, compute an explicit embedding to map the initial space into a Euclidean space; second, apply an encoding step designed to work with the Euclidean distance. Comparing this simple baseline with existing methods relying on implicit encoding, we demonstrate better search recall for similar code sizes with the chi-square kernel in databases comprised of visual descriptors, outperforming concurrent state-of-the-art techniques by a large margin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.