Abstract

In this paper, by systematically treating the integrals involved in the piezoelectric inclusion problem, explicit results were obtained for the piezoelectric Eshelby tensors for a spheroidal inclusion aligned along the axis of the anisotropy in a transversely isotropic piezoelectric material. This problem was first treated by Dunn and Wienecke (1996) using a Green's function approach, which closely follows Withers' approach (1989) for an ellipsoidal inclusion problem in a transversely isotropic elastic medium. The same problem was recently treated by Michelitsch and Levin (2000) also using a Green's function approach. In this paper, a different method was used to obtain the explicit results for the piezoelectric Eshelby tensors for a spheroidal inclusion. The method is a direct extension of a more unified approach, which has been recently developed by Mikata (2000), which is based on Deeg's results (1980) on a piezoelectric inclusion problem. The main advantage of this method is that it is more straightforward and simpler than Dunn and Wienecke (1996), or Michelitsch and Levin (2000), and the results are a little bit more explicit than their solutions. The key step of this paper is an analytical closed form evaluation of several integrals, which was made possible after a careful treatment of a certain bi-cubic equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.