Abstract
This paper considers an initial market model, specified by its underlying assets S and its flow of information F, and an arbitrary random time τ which might not be an F-stopping time. As the death time and the default time (that τ might represent) can be seen when they occur only, the progressive enlargement of F with τ sounds tailor-fit for modeling the new flow of information G that incorporates both F and τ. In this setting of informational market, the first principal goal resides in describing as explicitly as possible the set of all deflators for (Sτ,G), while the second principal goal lies in addressing the No-Free-Lunch-with-Vanishing-Risk concept (NFLVR hereafter) for (Sτ,G). Besides this direct application to NFLVR, the set of all deflators constitutes the dual set of all “admissible” wealth processes for the stopped model (Sτ,G), and hence it is vital in many hedging and pricing related optimization problems. Thanks to the results of Choulli et al. (2020), on martingales classification and representation for progressive enlarged filtration, our two main goals are fully achieved in different versions, when the survival probability never vanishes. The results are illustrated on the two particular cases when (S,F) follows the jump-diffusion model and the discrete-time model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.