Abstract

We give a new explicit construction of $n\times N$ matrices satisfying the Restricted Isometry Property (RIP). Namely, for some c>0, large N and any n satisfying N^{1-c} < n < N, we construct RIP matrices of order k^{1/2+c}. This overcomes the natural barrier k=O(n^{1/2}) for proofs based on small coherence, which are used in all previous explicit constructions of RIP matrices. Key ingredients in our proof are new estimates for sumsets in product sets and for exponential sums with the products of sets possessing special additive structure. We also give a construction of sets of n complex numbers whose k-th moments are uniformly small for 1\le k\le N (Turan's power sum problem), which improves upon known explicit constructions when (\log N)^{1+o(1)} \le n\le (\log N)^{4+o(1)}. This latter construction produces elementary explicit examples of n by N matrices that satisfy RIP and whose columns constitute a new spherical code; for those problems the parameters closely match those of existing constructions in the range (\log N)^{1+o(1)} \le n\le (\log N)^{5/2+o(1)}.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.