Abstract
Low-density parity-check (LDPC) codes are serious contenders to turbo codes in terms of decoding performance. One of the main problems is to give an explicit construction of such codes whose Tanner graphs have known girth. For a prime power q and m/spl ges/2, Lazebnik and Ustimenko construct a q-regular bipartite graph D(m,q) on 2q/sup m/ vertices, which has girth at least 2/spl lceil/m/2/spl rceil/+4. We regard these graphs as Tanner graphs of binary codes LU(m,q). We can determine the dimension and minimum weight of LU(2,q), and show that the weight of its minimum stopping set is at least q+2 for q odd and exactly q+2 for q even. We know that D(2,q) has girth 6 and diameter 4, whereas D(3,q) has girth 8 and diameter 6. We prove that for an odd prime p, LU(3,p) is a [p/sup 3/,k] code with k/spl ges/(p/sup 3/-2p/sup 2/+3p-2)/2. We show that the minimum weight and the weight of the minimum stopping set of LU(3,q) are at least 2q and they are exactly 2q for many LU(3,q) codes. We find some interesting LDPC codes by our partial row construction. We also give simulation results for some of our codes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.