Abstract
The pure braid group Γ of a quadruply-punctured Riemann sphere acts on the SL(2, ℂ)-moduli ℳ of the representation variety of such sphere. The points in ℳ are classified into Γ-orbits. We show that, in this case, the monodromy groups of many explicit solutions to the Riemann-Hilbert problem are subgroups of SU(2). Most of these solutions are examples of representations that have dense images in SU(2), but with finite Γ-orbits in ℳ. These examples relate to explicit immersions of constant mean curvature surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.