Abstract

This paper presents bounds on convergence rates of Markov chains in terms of quantities calculable directly from chain transition operators. Bounds are constructed by creating a probability distribution that minorizes the transition kernel over some region, and by examining bounds on an expectation conditional on lying within and without this region. These are shown to be sharper in most cases than previous similar results. These bounds are applied to a Markov chain useful in frequentist conditional inference in canonical generalized linear models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.