Abstract

Modeling nonlinearities, including damage, in the boundary element method (BEM) is usually carried out in implicit way, or in other words via applying initial stresses or strains over a discretized domain part. Such initial values have no physical meaning. They are only used to compensate the stress level due to the occurred nonlinearity. In this paper explicit implementation of nonlocal damage is proposed. The damaged points inside the domain is physically weakened by decreasing their modulus of elasticity. With the help of Eshelby's equivalent inclusion theory, this idea is developed and implemented in this work. Load control solution algorithm is used. Both average strain and average damage nonlocal models are considered. Numerical examples are presented to verify the developed formulation. Factors that affect the solution accuracy are studied in details.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.