Abstract
Real-life events, behaviors, and interactions produce sequential data. An important but rarely explored problem is to analyze those nonoccurring (also called negative) yet important sequences, forming negative sequence analysis (NSA). A typical NSA area is to discover negative sequential patterns (NSPs) consisting of important nonoccurring and occurring elements and patterns. The limited existing work on NSP mining relies on frequentist and downward closure property-based pattern selection, producing large and highly redundant NSPs, nonactionable for business decision-making. This work makes the first attempt for actionable NSP discovery. It builds an NSP graph representation, quantifies both explicit occurrence and implicit nonoccurrence-based element and pattern relations, and then discovers significant, diverse, and informative NSPs in the NSP graph to represent the entire NSP set for discovering actionable NSPs. A DPP-based NSP representation and actionable NSP discovery method, EINSP, introduces novel and significant contributions to NSA and sequence analysis: 1) it represents NSPs by a determinantal point process (DPP)-based graph; 2) it quantifies actionable NSPs in terms of their statistical significance, diversity, and strength of explicit/implicit element/pattern relations; and 3) it models and measures both explicit and implicit element/pattern relations in the DPP-based NSP graph to represent direct and indirect couplings between NSP items, elements, and patterns. We substantially analyze the effectiveness of EINSP in terms of various theoretical and empirical aspects, including complexity, item/pattern coverage, pattern size and diversity, implicit pattern relation strength, and data factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.