Abstract

Individuals with aphantasia report having difficulties or an inability to generate visual images of objects or events. So far, there is no evidence showing that this condition also impacts the motor system and the generation of motor simulations. We probed the neurophysiological marker of aphantasia during explicit and implicit forms of motor simulation, i.e. motor imagery and action observation, respectively. We tested a group of individuals without any reported imagery deficits (phantasics) as well as a group of individuals self-reporting the inability to mentally simulate images or movements (aphantasics). We instructed the participants to explicitly imagine a maximal pinch movement in the visual and kinaesthetic modalities and to observe a video showing a pinch movement. By means of transcranial magnetic stimulation, we triggered motor-evoked potentials in the target right index finger. As expected, the amplitude of motor-evoked potentials, a marker of corticospinal excitability, increased for phantasics during kinaesthetic motor imagery and action observation relative to rest but not during visual motor imagery. Interestingly, the amplitude of motor-evoked potentials did not increase in any of the conditions for the group of aphantasics. This result provides neurophysiological evidence that individuals living with aphantasia have a real deficit in activating the motor system during motor simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call