Abstract

A high-level action semantics for specifying and reasoning about dynamic systems is presented which supports both uncertain knowledge (taken as explicit indeterminism) and contradictory information (taken as implicit indeterminism). We start by developing an action description language for intentionally representing nondeterministic actions in dynamic systems. We then study the different possibilities of interpreting contradictory specifications of concurrent actions. We argue that the most reasonable interpretation which allows for exploiting as much information as possible, is to take such conflicts as implicit indeterminism. As the second major contribution, we present a calculus for our resulting action semantics based on the logic programming paradigm including negation-as-failure and equational theories. Soundness and completeness of this encoding wrt. the notion of entailment in our action language is proved by taking the completion semantics for equational logic programs with negation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.