Abstract

Abstract. Initial boundary value problems of the Dirichlet type for quasilinear functional differential equations are considered. Explicit difference schemes of the Euler type and implicit difference methods are investigated. Sufficient conditions for the convergence of approximate solutions are given and comparisons of the methods are presented. It is proved that assumptions on the regularity of given functions are the same for both classes of the methods. It is shown that conditions on the mesh for explicit difference schemes are more restrictive than suitable assumptions for implicit methods. Error estimates for both methods are presented. Interpolating operators corresponding to functional variables are constructed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.