Abstract
Abstract Polo is a popular sport in New Zealand, Australia, the United Kingdom, and many other countries. Polo is a vigorous sport involving players and horses moving at speed and can result in head injuries caused by falls. Helmets play a vital role in the safety and protection of Polo players. This study investigates different hemispheric bumper shapes of the helmet to improve the impact resistance performance using finite element analysis (FEA) and explicit dynamics analysis (EDA). The aerodynamic performance of the proposed helmet is investigated using computational fluid dynamics (CFD) to account for drag impact on the Polo player's speed. These are investigated for impact resistance and the drag coefficient under different speeds. The EDA results show that the new proposed bumper will absorb the impact and reduce the energy transferred to the inside foam at a relative impact speed of 6.2 m/s, as recommended by the U.S. Consumer Product Safety Commission (CPSC), with a maximum total deformation of 4.42 mm compared to 4.19 mm and 3.85 mm for impact speeds of 5.9 m/s by the European standard PAS015:2011 helmets for equestrian use and 5.42 m/s BS EN 1078 helmets for bicyclists' use, respectively. Additionally, under speeds ranging from 15 km/h to 65 km/h, the new helmet demonstrated a drag coefficient of 0.454, similar to that of the national team helmet, at 0.423.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Engineering and Science in Medical Diagnostics and Therapy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.