Abstract
New explicit subgrid stress models are proposed involving the strain rate and rotation rate tensor, which can account for rotation in a natural way. The new models are based on the same methodology that leads to the explicit algebraic Reynolds stress model formulation for Reynolds-averaged Navier–Stokes simulations. One dynamic model and one non-dynamic model are proposed. The non-dynamic model represents a computationally efficient subgrid scale (SGS) stress model, whereas the dynamic model is the most accurate. The models are validated through large eddy simulations (LESs) of spanwise and streamwise rotating channel flow and are compared with the standard and dynamic Smagorinsky models. The proposed explicit dependence on the system rotation improves the description of the mean velocity profiles and the turbulent kinetic energy at high rotation rates. Comparison with the dynamic Smagorinsky model shows that not using the eddy-viscosity assumption improves the description of both the Reynolds stress anisotropy and the SGS stress anisotropy. LESs of rotating channel flow at Reτ = 950 have been carried out as well. These reveal some significant Reynolds number influences on the turbulence statistics. LESs of non-rotating turbulent channel flow at Reτ = 950 show that the new explicit model especially at coarse resolutions significantly better predicts the mean velocity, wall shear and Reynolds stresses than the dynamic Smagorinsky model, which is probably the result of a better prediction of the anisotropy of the subgrid dissipation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.