Abstract
Volatile organic compounds (VOCs) from industrial emissions have attracted great attention due to their negative effects on human, but there is lack of deterministic air quality model for VOC emissions. In this study, airborne VOCs from a typical petrochemical and oil refinery region, Lanzhou, Gansu province of China, were on-site measured. The regional pollution patterns were investigated using a species transport model and the health risks were evaluated. The spatial distribution of VOCs showed that 87.5 % of the airborne VOCs were benzene, toluene, ethylbenzene, and xylene having higher concentration (146 μg/m3) in the north direction oil refinery industrial areas. The concentrations of toluene and benzene were as high as 41.5 and 33.3 μg/m3 in the 4 km2 area away from the petrochemical emission source, respectively, and the concentration of o−/m + p-xylene was up to 79.7 μg/m3. Based on the measured concentration data, the numerical results showed that the accumulation of high concentration of VOC species by mass transfer in the region is related to the atmospheric diffusion driven by downward-moving air over the valley areas. Non-carcinogenic risk assessments showed that airborne benzene exposure had acceptable hazard quotient of 0.185 for adults, which was 1.8 times of children's (0.102), whereas it was found that a high carcinogenic risk (>10−4) from benzene in several sampling sites and diffuse distance become significant for carcinogenic risk. This study verified the effectiveness of VOC atmospheric diffusion model through a large number of on-site monitoring data, providing data support for model-based risk assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.