Abstract

Directing research on Alzheimer’s disease toward only early prediction and accuracy cannot be considered a feasible approach toward tackling a ubiquitous degenerative disease today. Applying deep learning (DL), Explainable artificial intelligence, and advancing toward the human-computer interface (HCI) model can be a leap forward in medical research. This research aims to propose a robust explainable HCI model using SHAPley additive explanation, local interpretable model-agnostic explanations, and DL algorithms. The use of DL algorithms—logistic regression (80.87%), support vector machine (85.8%), k -nearest neighbor (87.24%), multilayer perceptron (91.94%), and decision tree (100%)—and explainability can help in exploring untapped avenues for research in medical sciences that can mold the future of HCI models. The presented model’s results show improved prediction accuracy by incorporating a user-friendly computer interface into decision-making, implying a high significance level in the context of biomedical and clinical research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.