Abstract

Low energy ion scattering is very surface sensitive if scattered ions are analyzed. By time-of-flight (TOF) techniques, also neutral and charge integrated spectra (ions plus neutrals) can be obtained, which yield information about deeper layers. In the literature, the observation of a more or less pronounced surface peak was reported for charge integrated spectra, the intensity of the surface peak being higher at low energies and for heavy projectiles. Aiming at a more profound physical understanding of this surface peak, we performed TOF-experiments and computer simulations for He projectiles and a copper target. Experiments were done in the range 1–9 keV for a scattering angle of 129°. The simulation was performed using the MARLOWE code for the given experimental parameters and a polycrystalline target. At low energies, a pronounced surface peak was observed, which fades away at higher energies. This peak is quantitatively reproduced by the simulation, and corresponds to scattering from ∼2 atomic layers. Analyzing the contributions of the individual outermost atomic layers, one finds that the surface peak is due to binary collisions of projectiles with atoms in the first and second layer, while the contribution from deeper layers is dominated by multiple scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.