Abstract

Photocurrent enhancements in a dye sensitized photoelectrochemical cell (PEC) with a Cu/p-CuI/M-C18 photoelectrode and a dye sensitized solid state photovoltaic cell (DSSC) with Cu/n-Cu2O/M-C18/p-CuI are studied by controlling the formation of dye aggregates of M-C18 Langmuir–Blodgett (LB) films on the p-CuI layer. LB films of M-C18 are deposited under biasing conditions during the LB deposition process on Cu/p-CuI, Cu/n-Cu2O/p-CuI and conductive glass plates with the three-electrode configuration setup coupling to the LB trough. LB films prepared under positive biasing conditions enhance the photocurrent quantum efficiencies for both PECs and DSSCs controlling and minimizing the formation of dye aggregates. The electrolyte used for LB deposition and photocurrent measurements is (10−2 M) Fe2+ + Fe3+ (10−2 M) and (10−2 M) NaH2PO4–Na2HPO4, pH = 6 buffer solution. Maximum photocurrent quantum efficiencies (Фmax%) obtained are ≈22% for PEC and ≈20% for DSSCs, where the M-C18 LB film deposition applied potentials +0.3 V versus Ag/AgCl. The mechanism of the photocurrent enhancement is discussed through the CAN's model equation, Ф = AD0–BD02, where A = k1k2/F, B = I k12 k2[2k6/F3 + k2k4/k32 X2F2], F = k2 + k5Y + k7 + k1 I [1 + k2/k3 X], presented from our previous study [1]. Experimental evidence for the formation of the aggregates of M-C18 LB films for the negative applied potentials and suppression of the aggregates with positive applied potentials are presented from absorption spectra, AFM pictures and fluorescence measurements of the samples. Conversion efficiency obtained is ≈2.5%, Voc ≈750 mV and Isc ≈ 5.8 mA cm−2 for DSSC fabricated with +0.3 V versus Ag/AgCl applied deposition potential of M-C18 LB films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call