Abstract

The impact of program/erase (P/E) cycling on drain disturb in NOR Flash EEPROM cells under channel hot electron (CHE) and channel-initiated secondary electron (CHISEL) programming operation is studied. Charge gain disturb increases and charge loss disturb decreases after cycling under CHE and CHISEL operation. Carefully designed experiments and fullband Monte Carlo simulations were used to explain this behavior. P/E cycling induced degradation in gate coupling coefficient and the resulting increase in source/drain leakage, reduction in band-to-band tunneling and change in carrier injection area seems to explain well the behavior of CHE and CHISEL drain disturb after cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.