Abstract

ABSTRACTSeveral recent measurements have shown that annealing of metastable defects in a- Si:H can be accelerated by the presence of light. This is the opposite of the usual light-induced defect generation, and no existing rate equation explains it while maintaining the necessary symmetry of generation and recovery processes, and consistency with the stretched-exponential transients that best describe observed generation and anneal behavior. This paper shows that this light-enhanced annealing (LEA) can be explained readily by the usual rate equation leading to stretched exponentials with no other terms by allowing a variation of coefficients with temperature or light intensity. This equation then leads to good simulations of observed LEA. Interpretation of these results in terms of distributional changes is presented, and an experimental test is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.