Abstract
Knowledge distillation is widely used in pre-trained language model compression, which can transfer knowledge from a cumbersome model to a lightweight one. Though knowledge distillation based model compression has achieved promising performance, we observe that explanations between the teacher model and the student model are not consistent. We argue that the student model should study not only the predictions of the teacher model but also the internal reasoning process. To this end, we propose Explanation Guided Knowledge Distillation (EGKD) in this article, which utilizes explanations to represent the thinking process and improve knowledge distillation. To obtain explanations in our distillation framework, we select three typical explanation methods rooted in different mechanisms, namely gradient-based , perturbation-based , and feature selection methods. Then, to improve computational efficiency, we propose different optimization strategies to utilize the explanations obtained by these three different explanation methods, which could provide the student model with better learning guidance. Experimental results on GLUE demonstrate that leveraging explanations can improve the performance of the student model. Moreover, our EGKD could also be applied to model compression with different architectures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Asian and Low-Resource Language Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.