Abstract
During the initial transient stage of a directional alloy solidification experiment, a solid/liquid interface asymptotically recoils from a position that is given by the liquidus temperature to a position given by the solidus temperature. Recent observations onboard the International Space Station revealed that for the organic compound TRIS-NPG, the recoil appears much larger and varies linearly with time. In addition, such conditions were found that the high-temperature non-facetted plastic phase gradually dissolves and, although it seems contradictory to the interpretation of the thermodynamics of the binary system, the low-temperature facetted phase comes into direct contact with the liquid. Both unexpected observations can be understood by assuming that the TRIS-NPG alloy gradually decomposes at the hot side of the furnace. The decomposition products are then transported to the solid/liquid interface by diffusion and the sample motion. The presence of decomposition products changes the binary alloy into a TRIS-NPG-X ternary alloy, with a liquidus temperature that decreases with an increasing amount of decomposed substances.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.