Abstract

The analysis of variance in complex text traditions is an arduous task when carried out manually. Text alignment algorithms provide domain experts with a robust alternative to such repetitive tasks. Existing white-box approaches allow the digital humanities to establish syntax-based metrics taking into account the spelling, morphology and order of words. However, they produce limited results, as semantic meanings are typically not taken into account. Our interdisciplinary collaboration between visualization and digital humanities combined a semi-supervised text alignment approach based on word embeddings that take not only syntactic but also semantic text features into account, thereby improving the overall quality of the alignment. In our collaboration, we developed different visual interfaces that communicate the word distribution in high-dimensional vector space generated by the underlying neural network for increased transparency, assessment of the tool's reliability and overall improved hypothesis generation. We further offer visual means to enable the expert reader to feed domain knowledge into the system at multiple levels with the aim of improving both the product and the process of text alignment. This ultimately illustrates how visualization can engage with and augment complex modes of reading in the humanities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.