Abstract

<p>We analyze recent trends in extreme daily precipitation in the Southwestern Alps. We consider a high-resolution precipitation dataset of 1 x1 km<sup>2</sup> for the period 1958-2017. A robust method of trend estimation is considered, based on nonstationary extreme value distribution and a homogeneous neighborhood approach. The results show contrasting trends in extreme daily precipitation depending on the season. In autumn, the trends are significantly increasing in most of the Southwestern Greater Alpine Region, with an increase up to 100% the average maxima for the 20-year return level between 1958 and 2017, while the French Alps show mainly decreasing extremes. Knowing that autumn experiences most of the largest maxima, the increase in the Mediterranean area is of concern for risk protection.  In winter, the valleys and medium mountain areas surrounding the Northern French Alps show significant increasing extremes, while the inner French Alps, the Swiss Valais and the Aosta Valley show significant decreasing trends. In the other seasons, the significant trends are mostly negative in the Mediterranean area, while the French Alps show less organized and contrasting trends.  For all seasons, part of the significant changes in extremes can be related to changes in the dominant atmospheric influences generating the maxima, particularly in the Mediterranean influenced region that shows the most organized trends. In particular, the strong positive trends in autumn in Southern France are concomitant with an increase in Mediterranean influence generating the maxima. However some exceptions are notable with counter-intuitive trends in extremes given the trends in dominant influences. </p>

Highlights

  • OSA1.3 : Meteorological observations from GNSS and other space-based geodetic observing techniques OSA1.7: The Weather Research and Forecasting Model (WRF): development, research and applications

  • OSA3.5: MEDiterranean Services Chain based On climate PrEdictions (MEDSCOPE)

  • UP2.1 : Cities and urban areas in the earth- OSA3.1: Climate monitoring: data rescue, atmosphere system management, quality and homogenization 14:00-15:30

Read more

Summary

Introduction

OSA1.3 : Meteorological observations from GNSS and other space-based geodetic observing techniques OSA1.7: The Weather Research and Forecasting Model (WRF): development, research and applications. EMS Annual Meeting Virtual | 3 - 10 September 2021 Strategic Lecture on Europe and droughts: Hydrometeorological processes, forecasting and preparedness Serving society – furthering science – developing applications: Meet our awardees ES2.1 - continued until 11:45 from 11:45: ES2.3: Communication of science ES2.2: Dealing with Uncertainties

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.