Abstract

Fluorophosphate cathodes are currently one of the most promising polyanionic sodium-ion battery cathodes and exhibit specific energies not far below oxide cathodes. To further improve fluorophosphate cathodes, their capacity must be increased, which might be possible since some sodium (Na) remains unextracted in these cathodes during cycling. In this study we attempt to answer the question of what specific mechanism limits fluorophosphate cathode capacity, which could stem from either redox-limiting or site-limiting behavior. This paper reports the synthesis, electrochemical characterization, and computational examination of Na3GaV(PO4)2F3. This test system, which was designed explicitly for uncovering the limiting factors in these structures, exhibits reversible insertion of Na+ and redox activity for V2+ through V5+ during electrochemical cycling, indicating that fluorophosphate cathodes are not fundamentally redox-limited and must be site-limited. First-principles calculations indicate that large diffu...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.